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Abstract

An inverse homogenization problem for two-phase viscoelastic composites is formulated as a topology
optimization problem. The e�ective complex moduli are estimated by the numerical homogenization using the ®nite
element method. Sensitivity analysis shows that the sensitivity calculations do not require the solution of any adjoint

problem. The objective function is de®ned so that the topology optimization problem ®nds microstructures of
viscoelastic composites which exhibit improved sti�ness/damping characteristics within the speci®ed operating
frequency range. Design constraints include volume fraction, e�ective complex moduli, geometric symmetry and

material symmetry. Several numerical design examples are presented with discussions on the nature of the designed
microstructures. From the designed microstructures, it is found that mechanism-like structures and wavy structures
are formed to maximize damping while retaining sti�ness at the desired level. 7 2000 Published by Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Increasing demands for the control of noise and vibration in structures have forced designers to take
damping into account from the initial design stage. Viscoelastic composites have been widely applied for
the purpose of reducing noise and vibration as well as for the purpose of increasing sti�ness to weight
ratio. These trends are mainly due to the fact that viscoelastic composites have desirable damping
characteristics and provide design ¯exibility, i.e., tradeo� between damping and sti�ness. Polymer
composites, rubber-toughened composites, and engineering plastics are typical examples.
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From the viewpoint of designers, it would be very useful if there is a material which possesses optimal
properties under given environment. The property may be damping characteristics in the control of
noise and vibration. However, it is practically impossible to invent an optimal material for each new
design. Instead, it is more practical to construct and use a composite with materials at hand so that the
composite exhibits good properties under given environment. It has been suggested that sti�ness and
damping characteristics of a viscoelastic composite may be improved by changing its microstructural
topology (Yi et al., 1998).

The inverse homogenization approach (Sigmund, 1994) can be a good candidate in designing
composites with specially tailored properties. In this approach, composites are assumed to have periodic
microstructures. Following the structural topology optimization technique presented by Bendsùe and
Kikuchi (1988), the microstructural con®guration of a composite is represented by density distribution
in the unit cell. Then, an optimal density distribution is sought so that the resulting composite exhibits
the prescribed or optimal e�ective material properties. The (asymptotic) homogenization method is
employed to calculate the e�ective material properties of the composite. This approach has been applied
to the design of composites with extreme or unusual material properties: elastic composites with
Poisson's ratio close to ÿ1 and 0.5 (Sigmund, 1995) and thermoelastic composites with negative or zero
thermal expansion coe�cients (Sigmund and Torquato, 1997). It has also been applied to the design of
piezoelectric sensors to improve the sensitivities of the output signals to the input signal (Nelli Silva et
al., 1997).

In the present work, an inverse homogenization approach for two-phase viscoelastic composites is
presented aiming at improving sti�ness and damping characteristics. Several numerical examples and
some discussions on the nature of the designed microstructures are presented.

2. Homogenization in viscoelasticity

2.1. Introduction

The (asymptotic) homogenization method, which originated from the study of partial di�erential
equations with rapidly varying coe�cients, applies to the estimation of the e�ective material properties
of composites with periodic microstructures (Bensoussan et al., 1978; Sanchez-Palencia, 1980). The
homogenization method assumes that ®eld variable varies independently in the multiple length scales,
i.e., in the local and in the global scales. Due to the periodicity of the microstructure, ®eld variables
such as displacement, strain, and stress are assumed to be periodic with respect to the local scale. In
order to ®nd the e�ective material properties of a medium, the asymptotic behavior of the medium as
the period goes to zero is investigated. Mathematically, they are presented in the context of the
asymptotic expansions. At this point, it should be noted that the homogenization method has a rigorous
mathematical background; e.g., the solution of the original problem converges to the homogenized
solution as the period goes to zero at least for linear elastic and viscoelastic problems Ð for proof, see
Ref. (Sanchez-Palencia, 1980). Also, it is readily implemented with ®nite element method and thus
especially useful for microstructures with complex and irregular con®gurations (Guedes and Kikuchi,
1990).

Although more insights can be obtained if we consider the homogenization of an viscoelastic medium
in time domain (Yi et al., 1998), the homogenization in frequency domain (Nguyen et al., 1995) can be
easily formulated by virtue of the Correspondence Principle. In this case, the homogenization process
becomes identical to the one used in the elastic case except that the variables are complex. Since the
present work deals with the microstructure design in which damping characteristics are of major
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concerns, the e�ective relaxation moduli in time domain are not needed and the homogenization will be
done in frequency domain.

2.2. Basic concepts for homogenization

A brief summary of the homogenization problem for obtaining the e�ective complex moduli is
presented following the same procedure as in the elastic case given by Sanchez-Palencia (1980). For
more details, the readers are referred to: Bensoussan et al. (1978), Sanchez-Palencia (1980), Bakhvalov
and Panasenko (1989), Oleinik et al. (1992) and Jikov et al. (1994) for theoretical aspects; Guedes and
Kikuchi (1990) for ®nite element implementation; Nguyen et al. (1995) and Yi et al. (1998) for
homogenization in viscoelasticity among the extensive references.

We designate the global coordinate by x and the local coordinate by y. The global coordinate and the
local coordinate are related with each other by a positive real parameter e as follows:

y � x

e
: �1�

In 2D, Y-periodicity of a function f �y� in the local coordinate is de®ned as follows:

f�y1 � n1Y1, y2 � n2Y2 � � f�y1, y2�

8y � �y1, y2� 2 R 2 and 8�n1, n2� 2 N 2 �2�
where N is the set of integers, and Y1 and Y2 represent the period of the Y-periodicity, i.e.,

Y � �0, Y1 � � �0, Y2�: �3�
From an Y-periodic function f �y� in the local coordinate, an eY-periodic function f e�x� in the global
coordinate can be de®ned as follows:

f e�x� � f�x=e� � f�y�: �4�
Derivatives in the global scale and in the local scale can be related by using Eq. (1). Suppose that a
function ge�x� � g�x, y� depends on both the global and the local coordinates. Then, the following
relation holds:

@ge�x�
@xi

� @g�x, y�
@xi

� 1

e
@g�x, y�
@yi

; y � x

e
: �5�

For the averaging process of the homogenization, the following mean operator, ~*, on Y is de®ned.

~* � 1

jYj
�
Y

* dY �6�

where jYj is the measure of Y.

2.3. Linear viscoelasticity in frequency domain

A problem of 2D linear viscoelasticity with a periodic microstructure as shown in Fig. 1 is considered,
where the inertia e�ects and the body forces are not present. It is assumed that the problem is under
plane stress state and steady-state sinusoidal oscillation. Using the Correspondence Principle
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(Christensen, 1982), the problem at a ®xed frequency o is as follows:

@ �seij�x�
@xj

� 0 in O �7a�

�seij�x� � G e
ijkl�x, o� �ekl

ÿ
Åue�x�� �7b�

�ekl
ÿ

Åue�x�� � 1

2

�
@ �uek�x�
@xl

� @ �uel �x�
@xk

�
�7c�

where O is an open connected domain of R2: In the above equations, Åue, �ekl, and �sekl are the spatial part
of the displacement, strain, and stress, respectively:

ue�x, t� � �ue�x� exp�iot� �8a�

eekl�x, t� � �eekl�x� exp�iot� �8b�

sekl�x, t� � �sekl�x� exp�iot�: �8c�
The complex modulus tensor G e

ijkl�x, o� is given by

Fig. 1. A problem with periodic microstructure.
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G e
ijkl�x, o� � Gijkl

�
x

e
, o
�
� Gijkl�y, o� �9�

where Gijkl�y, o� is Y-periodic in the local coordinate y.
Note that the problem de®ned above is identical to the elasticity problem except that the variables in

the present problem are complex. The asymptotic behavior is to be observed as e approaches to zero.

2.4. Asymptotic expansions

The most important and essential postulate in the homogenization method is that �uei �x� has an
asymptotic expansion in the following form.

�uei �x� � �u0i �x� � e �u1i �x, y� � e2 �u2
i �x, y� � � � � ; y � x

e
�10�

where �umi �x, y� is Y-periodic in y and independent of e: From Eqs. (5) and (10), the asymptotic
expansions for �eeij�x� and �seij�x� are obtained as follows:

�eeij�x� � �eij
ÿ

Åue�x, y�
� � �e0ij�x� � e �e1ij�x, y� � � � � ; y � x

e
�11a�

�seij�x� � G e
ijkl �ekl

ÿ
Åue�x�� � �s0ij�x, y� � e �s1ij�x, y� � � � � ; y � x

e
�11b�

where

�e0ij�x, y� � �eijx� Åu0� � �eijy� Åu1� �12a�

�s0ij�x, y� � G e
ijkl�x, o� �ekl

ÿ
Åu0�x�

�
� Gijkl�y, o� �ekl

ÿ
Åu0�x�

�
: �12b�

In Eq. (12a), the subscripts x and y imply the di�erentiation with respect to xi and yi, respectively:

�eijx�Åv� � 1

2

�
@ �vi
@xj
� @ �vj
@xi

�
and �eijy�Åv� � 1

2

�
@ �vi
@yj
� @ �vj
@yi

�
: �13�

2.5. Local problem, global problem, and homogenized complex moduli

By introducing Eqs. (5) and (11b) into Eq. (7a), and arranging it against eÿ1 and e0, we obtain the
following two equations.

@ �s0ij�x, y�
@yj

� 0 �14a�

@ �s1ij�x, y�
@yj

� @ �s0ij�x, y�
@xj

� 0: �14b�

By applying the mean operator and imposing the periodicity condition, Eq. (14b) becomes
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@ ~�s
0

ij�x�
@xj

� 0: �15�

Eqs. (14a) and (15) represent the local and the global problems, respectively. By solving the local
problem (14a), we can obtain the homogenized complex moduli. Since the present work is not for the
illustration of the homogenization method and somewhat lengthy manipulations are needed to arrive at
the ®nal equations, we do not describe the procedure in detail. Following the same procedure as in Ref.
(Sanchez-Palencia, 1980) the local problem in frequency domain becomes as follows:

Find wwwkl 2 VY such that

�
Y

Gijpq�y, o�
@wklp
@yq

@vi
@yj

dY �
�
Y

Gijkl�y, o�@vi
@yj

dY, 8v 2 VY �16�

where

VY �
�
ujui 2 H 1

loc
�R2 �, Y-periodic

	
: �17�

And the homogenized stress±strain relations in frequency domain are given as follows:

~�s
0

ij�x� � G h
ijkl�o� �ekl

ÿ
Åu0�x�

�
�18�

with the following homogenized or e�ective complex moduli.

G h
ijkl�o� �

1

jYj
�
Y

Gpqrs�y, o�
 
dkpdlq ÿ

@wklp
@yq

! 
dirdjs ÿ @w

ij
r

@ys

!
dY �19�

where wklp is the solution of the local problem (16). By solving the local problem (16) and using Eq. (19)
the e�ective complex moduli at a given frequency are obtained.

It is noted that Eqs. (15), (18), and (13) constitute the homogenized problem, which has the same
form as the original problem (7a)±(7c) except that, in the homogenized problem, the material properties
no longer depend on the local coordinate y. It is also noted that the functions in Eqs. (16) and (19) are
complex. Thus, for the numerical solutions of the e�ective complex moduli, we need a ®nite element
implementation with complex variables.

3. Inverse homogenization problem

3.1. Introduction

From the study of the homogenization of general viscoelastic composites in time and frequency
domain (Yi et al., 1998), it has been suggested that damping characteristics may be improved by
modifying the microstructural con®gurations of viscoelastic composites. The inverse homogenization
(Sigmund, 1994), which is based on the homogenization method and the structural topology
optimization, seems to be a natural approach for this purpose.

In structural topology optimization (Bendsùe and Kikuchi, 1988), a generalized shape optimization
problem is considered by introducing material density at each point of the design domain. Then, the
topology optimization problem becomes an optimization problem to ®nd an optimal density distribution

Y. Yi et al. / International Journal of Solids and Structures 37 (2000) 4791±48104796



in the design domain. Mathematically, this corresponds to the relaxation of a variational problem
(Kohn and Strang, 1986). The homogenization method has been naturally applied to extract a relation
between the material property and the material density by employing composite models such as the
rectangular cell with a rectangular hole (Bendsùe and Kikuchi, 1988) or rank-2 layering (Bendsùe, 1989).
However, arti®cial material models can also be employed to obtain a simple moduli±density relationship
(Bendsùe et al., 1993; Yang and Chuang, 1994; Youn and Park, 1997). For more details on the
structural topology optimization, the readers are referred to Bendsùe et al. (1994), Bendsùe (1995),
Rozvany et al. (1995) and Allaire et al. (1997).

In this section, an inverse homogenization problem of two-phase viscoelastic composites is formulated
as a topology optimization problem following a similar approach as that of Sigmund and Torquato
(1997).

3.2. Design variables and arti®cial two-phase material model

An inverse homogenization problem is de®ned as a topology optimization in which a distribution of
two viscoelastic phases in a unit cell is to be found so as to optimize the sti�ness and damping
characteristics of the resulting viscoelastic composite. In order to set up a topology optimization
problem, at each point in the design domain, we need complex moduli as a function of the material
density. In a practical viewpoint, the relationship needs not to be based on a concrete model. This
explains wide use of the so-called arti®cial material model, which signi®cantly simpli®es the topology
optimization problem. Note that, however, the homogenization is involved in the evaluation of the
objective function and the constraints.

We employ an arti®cial two-phase material model, which is similar to that proposed by Sigmund and
Torquato (1997). At each point y in the design domain, i.e. the unit cell, the complex moduli are de®ned
as follows:

Gijkl�y, o� � r�y�G �1�ijkl�o� �
ÿ
1ÿ r�y��G �2�ijkl�o� �20�

where G
�1�
ijkl and G

�2�
ijkl are the complex moduli of phase 1 and phase 2 materials, respectively, and r the

density of phase 1 material at the point y. Of course, the density of phase 2 material is 1ÿ r:
Design domain, which is a periodic unit cell, is discretized with N ®nite elements. The density is

assumed to be constant in each element but it can be varied from one element to another. The density
in each element becomes the design variable of the optimization problem. With the present arti®cial
material model, the topology optimization problem becomes similar to the thickness optimization
problem with two layers in which the total thickness is constant through the design domain.

3.3. Sensitivity analysis

Sensitivities are required for the e�cient computation of the iterative design modi®cations in the
optimization process. Since, as will be seen later, the objective function and the constraints are de®ned
as functions of the storage modulus, the loss modulus, and the loss tangent of the homogenized
medium, the sensitivities of the e�ective complex moduli with respect to density change are necessary.
By di�erentiating Eq. (19) with respect to the density of the eth element, we have:
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@G h
ijkl�o�
@re

� 1

jYj
�
Y

@Gpqrs�y, o�
@re

 
dkpdlq ÿ

@wklp
@yq

! 
dirdjs ÿ @w

ij
r

@ys

!
dY

ÿ 1

jYj
�
Y

Gpqrs�y, o�
@ 2wklp
@re@yq

 
dirdjs ÿ @w

ij
r

@ys

!
dY

ÿ 1

jYj
�
Y

Gpqrs�y, o�
 
dkpdlq ÿ

@wklp
@yq

!
@ 2wijr
@re @ys

dY �21�

where re is the density in the eth element. Let us consider the second term of the right-hand side in the
above equation. It can be rewritten as follows:

ÿ 1

jYj
�
Y

Gpqrs�y, o�
@ 2wklp
@re @yq

 
dirdjs ÿ @w

ij
r

@ys

!
dY � 1

jYj
�
Y

Gpqrs�y, o�@w
ij
r

@ys

@

@yq

 
@wklp
@re

!
dY

ÿ 1

jYj
�
Y

Gpqij�y, o� @
@yq

 
@wklp
@re

!
dY: �22�

Note that @wwwkl=@re is in VY since the solutions of Eq. (16) are in VY for any density distribution and
their linear combinations are also in VY: Therefore, noting that wwwkl satis®es Eq. (16) for any function in
VY, the second term of Eq. (21) becomes zero by applying Eq. (16) to Eq. (22). Similarly, the third term
of Eq. (21) also becomes zero. Thus, Eq. (21) is reduced as follows:

@G h
ijkl�o�
@re

� 1

jYj
�
Y

@Gpqrs�y, o�
@re

 
dkpdlq ÿ

@wklp
@yq

! 
dirdjs ÿ @w

ij
r

@ys

!
dY: �23�

Also, from Eq. (20) the following simple relation holds for the suggested arti®cial two-phase material
model.

@Gijkl�y, o�
@re

�
(
G
�1�
ijkl�o� ÿ G

�2�
ijkl�o� if y 2 Ye

0 otherwise
�24�

where Ye is the domain of the eth element. From Eqs. (23) and (24) we ®nally arrive at the following
simple formula for the sensitivities of the e�ective complex moduli with respect to the element density.

@G h
ijkl�o�
@re

� 1

jYj
�
Ye

�
G
�1�
ijkl�o� ÿ G

�2�
ijkl�o�

� 
dkpdlq ÿ

@wklp
@yq

! 
dirdjs ÿ @w

ij
r

@ys

!
dYe: �25�

Note that it is not required to solve any adjoint problem to obtain the sensitivities. This is not the case
for more complex problems such as the homogenization of piezoelectric composites (Nelli Silva et al.,
1997).

3.4. Objective function

The objective of the present work is to ®nd a microstructure so that the designed viscoelastic
composite exhibits desirable sti�ness and damping characteristics under given operating environments.
In general, design requirements on sti�ness and damping characteristics are problem dependent. In a
case, a desirable design may be one that maximizes damping at a frequency range while maximizes
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sti�ness at another frequency range. In another case, a design that exhibits high sti�ness, regardless of
damping, along one direction while exhibits high damping, regardless of sti�ness, along another
direction may be desired. Also, in some cases, damping to sti�ness ratio may be of concern rather than
the damping itself. In order to cover up these various kinds of objectives in diverse situations, the
objective function in the present study is de®ned as a combination of storage modulus, loss modulus,
and loss tangent at operating frequencies with linear and exponential weighting factors on each
component.

f1 �
X3
i�1

X3
j�i

XM
m�1

zstorage�i, j, m�
ÿ
G 0ij�om�

�Zstorage�i, j, m�

�
X3
i�1

X3
j�i

XM
m�1

zloss�i, j, m�
ÿ
G 00ij �om �

�Zloss�i, j, m��
X3
i�1

X3
j�i

XM
m�1

ztan�i, j, m�
ÿ
tan dij�om�

�Ztan�i, j, m�
�26�

where M is the number of operating frequencies, om is the mth operating frequency, G 0ij�om� is the ij-
component of storage modulus at om, G

00
ij �om� is the ij-component of loss modulus at om, tan dij�om� is

the ij-component of loss tangent at om, z is the linear weighting factors, and Z is the exponential
weighting factors.

Note that this form of combining individual objectives is common in multi-objective optimization.
The linear weighting factors are used mainly for quantifying the relative contribution from each
objective. The exponential weighting factors are used to account for the situations where di�erent
designs, which have the same linear sum of the individual objectives result, in di�erent performances.
Exponential weighting factors greater than one tend to penalize the individual objectives and those
smaller than one tend to make a compromise between the competing objectives. In many cases, the
exponential weighting factors can signi®cantly a�ect the convergence characteristics of the optimization
process. Also, there are numerous local minima in the inverse homogenization problems (Sigmund and
Torquato, 1997). These two facts lead to the conclusion that, when selecting the weighting factors, the
e�ects of weighting factors on the convergence characteristics should also be taken into account.
However, at present, there is no particular rule for the selection of the weighting factors except that too
large exponential weighting factors are prohibited. In practice, the weighting factors can be easily
manipulated to obtain useful microstructures.

For clearer interpretation of the result, it is desirable to suppress intermediate values in the optimized
density distribution. This can be accomplished by including a penalty term in the objective function
(Allaire and Kohn, 1993). Following the approach, the objective function used in the present work is
follows:

f2 � f1 � zpenalty

"XN
e�1

re
ÿ
1ÿ re

�#Zpenalty

�27�

where f1 is as de®ned in Eq. (26) and zpenalty and Zpenalty are weighting factors for the penalty term on the
intermediate densities.

3.5. Design constraints

In the present formulation, the design variables are the densities of phase 1 material in the elements.
Since these design variables are e�ective only on [0, 1], side constraints are imposed on them.
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0RreR1 8e � 1, . . . ,N: �28�

Volume fraction of each phase can also be constrained as follows:

VminR
XN
e

reVeRVmax �29�

where Ve is the volume (area in 2D) of the eth element and Vmin and Vmax the lower and the upper
bounds for the volume of phase 1 material, respectively. The lower and the upper bounds for phase 2
material are jYj ÿ Vmax and jYj ÿ Vmin, respectively, since we assume that the density of phase 2 material
is 1ÿ re:

Symmetry conditions can be applied to the geometry of a microstructure by design variable linking,
i.e., assigning the same density value to the elements in symmetric position (Sigmund and Torquato,
1997). In the present work, the geometric symmetry can be imposed about the X1-axis or about the X2-
axis as well as about both the X1- and X2-axes. The geometric symmetry not only reduces the number of
design variables but also ensures the orthotropy of a composite. Another bene®t is that the
interpretations of the results can be easier. In some cases, the small number of design variables due to
the geometric symmetry can improve the convergence by attenuating the problem of numerous local
minima.

Constraints on the e�ective complex moduli or on some functions of the moduli may be useful. At
this point, it is noted that material symmetries such as square symmetry and isotropy can be represented
using a linear combination of components of the moduli. Assuming orthotropy, which can be easily
imposed by the geometric symmetry, we have the following conditions on material symmetries for 2D
plane stress state (Sigmund and Torquato, 1997).

. Square symmetry condition: G11 � G22

. Isotropy condition: G11 � G22 and G11 � G12 � 2G33:

All these kinds of constraints, including side constraints on some components of the e�ective complex
moduli and the material symmetries, can be treated in a general form as follows:

L�k�Rc
�k�
1 g
�k�
1 � c

�k�
2 g
�k�
2 � c

�k�
3 g
�k�
3 RU �k� �30�

where g is one of storage modulus, loss modulus, or loss tangent at some frequency, c the coe�cients,
and k the constraint number.

3.6. Problem statements and optimization scheme

With the design variable, the objective function, and the design constraints de®ned previously, an
inverse homogenization problem for optimal microstructure design can be stated as a topology
optimization problem as follows:
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maximize f2�r1, . . . ,rN�
subject to 0RreR1

VminR
XN
e

reVeRVmax

L�k�Ra
�k�
1 g
�k�
1 � a

�k�
2 g
�k�
2 � a

�k�
3 g
�k�
3 RU �k�

geometric symmetry

�31�

where f2 is de®ned in Eq. (27).
For the optimization algorithm, the sequential linear programming (SLP) is used. In SLP, the

optimization problem is linearized around the current design point in each iteration and the next design
is found by the linear programming. In this work, the method of feasible directions is used as the
constrained linear programming method. The reason for using SLP is its robustness since the inverse
homogenization problem has numerous local minima and is not a well-behaved problem (Sigmund and
Torquato, 1997). For the implementation of the optimization algorithm, DOT (Design Optimization
Tool) version 4.00, which is a general purpose FORTRAN subroutines for optimization, is used (VMA
Engineering, 1993). It is noted that, although the homogenization problem (16) deals with complex
variables, the objective function and constraints are all real variables since they are based on the storage
modulus and the loss modulus. For more details on the optimization scheme used in the present work

Fig. 2. Microstructure for example 1.
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(SLP with the method of feasible directions), readers can refer to Arora (1989) for the theoretical
aspects and VMA Engineering (1993) for the implementational details.

4. Numerical examples and discussions

4.1. Introduction

In this section, numerical examples for the microstructure design to improve sti�ness and damping
characteristics of viscoelastic composites are presented. The design domain is discretized with 12 � 12
square bilinear ®nite elements in a unit cell. The design optimization starts with an initial density
distribution of the two-phase material. The initial density in each element is randomly generated with
minimal conditions: the side constraints (28) and the volume constraint (29). Initial density distribution
should not be uniform. For the uniform density distribution, design change cannot occur since the
sensitivities in all elements are identical.

Because of numerous local minima, the resulting density distribution strongly depends on the initial
guess and the parameters used in the speci®c optimization scheme as well as the weighting factors. As a
result, it may not be only meaningless but also confusing the readers to present the speci®c values of the
weighting factors, the initial guesses, and the parameters used in the examples since it is practically
impossible to reproduce the same results. Therefore, in the following examples, only the essential
features of objective function and constraints will be presented. However, it is found in the numerical
examples that although the density distributions are varied signi®cantly according to the choices of
weighting factors and initial guesses, the objective function values do not di�er largely provided that
weighting factors and initial guesses are properly chosen so as to converge to a solution smoothly.

In the ®gures of the unit cells, as shown in Fig. 2, black elements represent material 1, white elements
represent material 2, and gray elements represent intermediate phase.

4.2. Example 1

As a ®rst example, microstructure design of a viscoelastic composite composed of an elastic phase and
a viscoelastic phase is considered. Although the material properties are non-dimensional, their relative
magnitudes are taken from the approximate material properties of typical glass for the elastic material
and typical epoxy for the viscoelastic material. The viscoelastic material is modeled by the standard
linear solid (Christensen, 1982) and the relaxation time is arti®cially assumed. The material properties
are as follows.

E � 70, n � 0:22 for phase 1 material

E�t� � 1� 2:5eÿt, n � 0:35 for phase 2 material:

Table 1

E�ective complex moduli of example 1

Frequency, o Storage modulus, G 011�o� Loss modulus, G 0011�o� Loss tangent, tan d11�o�

Material 1 0.5 73.56 0.00 0.000

Material 2 0.5 1.71 1.14 0.667

Composite 1 0.5 4.58 2.83 0.618

Composite 2 0.5 24.84 1.10 0.044

Optimal composite 0.5 15.01 2.76 0.184
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Suppose we are to design a microstructure of a viscoelastic composite which is composed of the above
two materials with 50% volume fraction for each material. The composite is to be used in vibrating
structures and the operating frequency is arti®cially assumed to be 0.5.

A simple way for constructing microstructures is to use a square unit cell with a circular inclusion.
Let us de®ne two kinds of composites with this microstructural con®guration for later references. For
the composite 1, the elastic material is used for the circular inclusion and the viscoelastic material for
the matrix. For the composite 2, the roles of the two materials are interchanged. Table 1 shows the
e�ective complex moduli of these two composites at the operating frequency. In many engineering
applications, certain degrees of lower bounds are required for both sti�ness and damping. For example,
to reduce vibration e�ectively by using a damper, sti�ness of a damper should not be too low. Suppose
that we need a composite whose sti�ness, G 011 � G 022, should be greater than 15 and the corresponding
loss tangent should be as large as possible at the given frequency. With a simple microstructural
con®guration such as the composite 1 and the composite 2 de®ned above, we cannot obtain a
satisfactory design. Even if we increase the volume fraction of the elastic inclusion in the composite 1 up
to 70%, G 011 � G 022 have a value of only 10.16. In that case, the diameter of the circular inclusion
becomes 0.944 if the unit cell size is 1. If we use the composite 2 to obtain su�cient sti�ness, then
damping characteristics becomes worse.

The ®rst design example has been selected with the above observations in mind. The objective of this
example is to ®nd a microstructure which yields as large damping as possible while the minimally
required sti�ness is to be achieved at the operating frequency, o � 0:5: The description of the objective

Fig. 3. Periodic microstructure for example 1.
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function and the constraints are as follows.

maximize tan d11�o�
ÿ � tan d22�o�

�
, where o � 0:5

subject to G 011�o� � G 022�o�r15:0
50% volume fraction for each material

geometric symmetry about X1-axis and X2-axis:

Also, the penalty term has been added as in Eq. (27) to reduce the regions of intermediate density. Fig. 2
shows the unit cell with the optimal microstructure, for which the solution converged after 148 function
calls. Fig. 3 also shows the same microstructure in a 3� 3 cells for easier understanding of the designed
microstructure. The e�ective complex moduli are listed in Table 1. It can be concluded that the newly
designed microstructure shows successful tradeo� between sti�ness and damping. Some interpretations
are possible for the designed microstructure. The elastic phase is nearly connected so as to provide
su�cient sti�ness. At the same time, the elastic phase forms a mechanism-like structure in some region
with lumps of viscoelastic phase around the linkage. This mechanism-like structure in the elastic phase
result in su�cient deformation in the viscoelastic phase. These two facts explain the tradeo� between
sti�ness and damping. The mechanism-like structures are also found in the microstructures with extreme
properties such as negative Poisson's ratio and it has been pointed out that the mechanism-like
structures have a crucial role in such extreme microstructures (Sigmund, 1995). Although the designed
microstructures are di�erent with di�erent initial guesses and weighting factors used, the essential

Fig. 4. Microstructure for Example 2.
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features of the optimal microstructures are the same. The main di�erences are in their convergence
speed and interpretability (by human).

4.3. Example 2

Suppose that the constituent materials and the operating frequency are same as in Example 1.
However, in this time, suppose that the structure experiences higher vibration level in one direction. For
example, the payloads mount structure for installing electronic devices in a launch vehicle experiences
higher vibration level in longitudinal direction than in lateral direction. Suppose that we want to design
a viscoelastic composite, which should exhibits a good damping characteristics in that direction in order
to use the composite as an anti-vibration damper. To reduce vibration e�ectively by using a damper,
sti�ness of a damper should not be too low. Suppose that we need a composite whose sti�ness,
G 011 � G 022, should be greater than 15, and the corresponding loss tangent should be as large as possible
at a given frequency in a speci®ed direction. With such a simple microstructural con®guration as the
composite 1 and the composite 2 in Example 1, we cannot obtain the satisfactory design as stated in
Example 1.

The second design example has been selected with the above observations in mind. The objective of
this example is to ®nd a microstructure that yields as large damping as possible in a speci®ed direction
while the desired sti�ness of the microstructure is maintained. The description of the objective function
and the constraints are as follows.

Fig. 5. Periodic microstructure for Example 2.
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maximize tan d11�o�, where o � 0:5
subject to G 011�o� � G 022�o�r15:0

geometric symmetry about X1-axis:

Note that in the present example the loss tangent can be di�erent along di�erent directions and the
volume constraint is not given. Fig. 4 shows the unit cell of an optimal microstructure. Fig. 5 also
shows the same microstructures in a 3 � 3 cells for easier understanding of the designed microstructure.
The e�ective complex moduli are listed in Table 2. Some interpretations are possible for the designed
microstructure as in Example 1. The elastic phase are nearly connected together so as to provide
su�cient sti�ness as in Example 1. At the same time, the viscoelastic phase forms a wavy pattern
between elastic phase, which also forms a wavy pattern. This microstructure with wavy viscoelastic
phase and elastic phase result in su�cient deformations in the viscoelastic phase in the speci®ed
direction. These facts explains the tradeo� between sti�ness and damping in the composites.

4.4. Example 3

As the ®nal example, microstructure design of a viscoelastic composite composed of two di�erent
viscoelastic materials is considered. The relative magnitudes of the material properties are taken from
the approximate material properties of polyimide materials. The viscoelastic material behavior is again
modeled by the standard linear solid and the relaxation times are arti®cially assumed. The material
properties are as follows.

Table 2

E�ective complex moduli of example 2

Frequency, o Storage modulus, G 011�o� Loss modulus, G 0011�o� Loss tangent, tan d11�o�

Material 1 0.5 73.56 0.00 0.000

Material 2 0.5 1.71 1.14 0.667

Composite 1 0.5 4.58 2.83 0.618

Composite 2 0.5 24.84 1.10 0.044

Optimal composite 0.5 15.02 6.58 0.438

Table 3

E�ective complex moduli of example 3

Frequency, o Storage modulus, G 011�o� Loss modulus, G 0011�o� Loss tangent, tan d11�o�

Material 1 0.04 1.04 1.18 1.132

0.4 3.79 0.80 0.212

Material 2 0.04 0.58 0.14 0.237

0.4 1.04 1.18 1.132

Composite 1 0.04 0.84 0.43 0.510

0.4 2.02 1.36 0.672

Composite 2 0.04 0.81 0.52 0.637

0.4 2.14 1.19 0.555

Optimal composite 1 0.04 0.83 0.48 0.583

0.4 2.11 1.26 0.600

Optimal composite 2 0.04 0.83 0.49 0.596

0.4 2.12 1.25 0.588
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E�t� � 0:5� 3eÿt=10, n � 0:35 for phase 1 material

E�t� � 0:5� 3eÿt, n � 0:35 for phase 2 material:

We are to design a microstructure of a composite which is composed of the two materials with 50%

volume fraction for each material. The composite is to be used in vibrating structures with the operating

frequencies, 0.04 and 0.4. By the same way as in Example 1, two composites are de®ned and termed as

composite 1 and composite 2. The e�ective complex moduli of the two given materials and the two

composites are listed in Table 3. The two composites show di�erent damping characteristics at each

operating frequency. At the ®rst operating frequency, o � 0:04, the composite 2 has larger damping
than the composite 1. In contrast, the composite 1 has larger damping than the composite 2 at the

second operating frequency, o � 0:4: However, the di�erences in sti�ness are not as large as the

di�erences in damping since the two constituent materials have di�erent relaxation times while their

sti�nesses are comparable. Therefore, the design focus will be placed on the damping characteristics.

The second design example is de®ned as a problem to ®nd a microstructure that yields as large
damping as possible in the sense that the average value of the loss tangents at the two frequencies

becomes maximum. The description of the problem is as follows.

Fig. 6. Microstructure for Example 3.
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maximize tan d11�o1 � � tan d11�o2�, where o1 � 0:04, o2 � 0:4
subject to G 011�o1 � � G 022�o1�, G 011�o2� � G 022�o2�

G 0011�o1 � � G 0022�o1�, G 0011�o2� � G 0022�o2�
50% volume fraction for each material

geometric symmetry about X1-axis and X2-axis:

Also, the penalty term has been added to suppress the intermediate phase of the arti®cial two-phase
material model. Fig. 6 shows the unit cell of the optimal microstructure, for which the solution
converged after 32 function calls. Fig. 7 shows the same microstructure in a 3 � 3 cell. The newly
designed microstructure has the mechanism-like structure as in Example 1. The e�ective complex moduli
are listed in Table 3, where optimal composite 2 is one obtained with a di�erent initial guess although
its microstructure is not presented here. The results show that a tradeo� has been made between the
composite 1 and the composite 2. The di�erence in the loss tangent at each operating frequency is
decreased compared to the composite 1 and composite 2. The loss tangent itself is greater than the
smaller of those of the composite 1 and the composite 2. Fig. 8 shows the loss tangents of the two given
constituent materials, the two conventional composites, and the newly designed composites as a function
of frequency. It shows the improvements in damping characteristics in the range of interest. Although
only two frequencies are taken as the operating frequencies of interest in this numerical experiment, the
same procedure can be applied for more operating frequencies.

As in the previous elastic±viscoelastic composite design example, the present example also has the

Fig. 7. Periodic microstructure for Example 3.
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problem of numerous local minima. However, the damping characteristics of the optimal
microstructures computed from di�erent initial guesses are almost the same as shown in Fig. 8.

5. Conclusions

Optimal design of microstructures of viscoelastic composites is presented, aiming at improving
sti�ness and damping characteristics following the inverse homogenization approach. An inverse
homogenization problem is presented as a topology optimization problem of two-phase composites. An
arti®cial two-phase material model is introduced to simplify the problem. The sensitivities of the
e�ective complex moduli with respect to density has a simple form: no adjoint problem has to be solved.
The objective function is de®ned as a combination of e�ective complex moduli to cover up wide range
of applications related to sti�ness and damping characteristics. A penalty term is added to the objective
function to suppress the intermediate density. Several kinds of design constraints are used to aid trade-
o�s between sti�ness and damping characteristics and to include geometric and material symmetry
conditions.

The numerical examples show that the improvements in the damping characteristics of viscoelastic
composites can be achieved by designing topological structures of the composites. From the designed
microstructures, it is found that mechanism-like structures and wavy structures have a crucial role in
improving damping by providing su�cient deformation in viscoelastic phase while maintaining sti�ness
at desired level.

As with other inverse homogenization problems for elastic, thermoelastic, and piezoelectric
composites, the present problem also has such numerical di�culties as mesh dependency and numerous
local minima. More critical problem resides in manufacturing of the designed microstructures. Advanced

Fig. 8. Comparison of loss tangents in Example 3.
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manufacturing technology should be developed so that the designs are realized within a reasonable cost.
Newly developed technologies such as micromachining and fabrication of molecular composites by
micro-network may be possible candidates. For example, works on fabricating molecular composites at
the molecular level is in progress now (Sperling, 1992).

References

Allaire, G., Kohn, R.V., 1993. Topology optimization and optimal shape design using homogenization. In: Bandsoe, M.P., Mota

Soares, C.A. (Eds.), Topology Design of Structures. Kluwer Academic Publishers, Dordrecht, pp. 207±218.

Allaire, G., Bonnetier, E., Francfort, G., Jouve, F., 1997. Shape optimization by the homogenization method. Nemerische

Mathematik 76, 27±68.

Arora, J.S., 1989. Introduction to Optimum Design. McGraw-Hill, New York.

Bakhvalov, N., Panasenko, G., 1989. Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the

Mechanics of Composite Materials, Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers, Dordrecht.

Bendsùe, M.P., Kikuchi, N., 1988. Generating optimal topologies in structural design using a homogenization method. Computer

Methods in Applied Mechanics and Engineering 71, 197±224.

Bendsùe, M.P., 1989. Optimal shape design as a material distribution problem. Structural Optimization 1, 193±202.

Bendsùe, M.P., Diaz, A., Kikuchi, N., 1993. Topology and generalized layout optimization of elastic structures. In: Bandsoe, M.P.,

Mota Soares, C.A. (Eds.), Topology Design of Structures. Kluwer Academic Publishers, Dordrecht, pp. 159±205.

Bendsùe, M.P., Ben-Tal, A., Zowe, J., 1994. Optimization methods for truss geometry and topology design. Structural

Optimization 7, 141±159.

Bendsùe, M.P., 1995. Optimization of Structural Topology, Shape, and Material. Springer±Verlag, Berlin.

Bensoussan, A., Lions, J.-L., Papanicolaou, G., 1978. Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its

Applications, vol. 5. North-Holland, Amsterdam.

Christensen, R.M., 1982. Theory of Viscoelasticity: An Introduction, 2nd ed. Academic Press, New York.

Guedes, J.M., Kikuchi, N., 1990. Preprocessing and post processing for materials based on the homogenization method with

adaptive ®nite element methods. Computer Methods in Applied Mechanics and Engineering 83, 143±198.

Jikov, V.V., Kozlov, S.M., Oleinik, O.A., 1994. Homogenization of Di�erential Operators and Integral Functionals. Springer±

Verlag, Berlin.

Kohn, R.V., Strang, G., 1986. Optimal design and relaxation of variational problems. Communications on Pure and Applied

Mathematics 39, 113±137 (Part I), 139±192 (Part II), 353±377 (Part III).

Nelli Silva, E.C., Fonseca, J.S.O., Kikuchi, N., 1997. Optimal design of piezoelectric microstructures. Computational Mechanics

19, 397±410.

Nguyen, H.V., Pastor, J., Muller, D., 1995. A method for predicting linear viscoelastic mechanical behavior of composites, a

comparison with other methods and experimental validation. European Journal of Mechanics, A/Solids 14, 939±960.

Oleinik, O.A., Shamaev, A.S., Yosi®an, G.A., 1992. Mathematical Problems in Elasticity and Homogenization, Studies in

Mathematics and Its Applications, vol. 26. North-Holland, Amsterdam.

Rozvany, G.I.N., Bendsùe, M.P., Kirsch, U., 1995. Layout optimization of structures. Applied Mechanics Review 48 (2), 41±119.

Sanchez-Palencia, E., 1980. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer±Verlag,

Berlin.

Sigmund, O., 1994. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of

Solids and Structures 31, 2313±2329.

Sigmund, O., 1995. Tailoring materials with prescribed elastic properties. Mechanics of Materials 20, 351±368.

Sigmund, O., Torquato, S., 1997. Design of materials with extreme thermal expansion using a three-phase topology optimization

method. Journal of Mechanics and Physics of Solids 45, 1037±1067.

Sperling, L.H., 1992. Introduction to Physical Polymer Science. Wiley, New York.

VMA Engineering, 1993. Dot Users Manual, Version 4.00. Vanderplaats, Miura and Associates, CA.

Yang, R.J., Chuang, C.H., 1994. Optimal topology design using linear programming. Computers and Structures 52 (2), 265±275.

Yi, Y.-M., Park, S.-H., Youn, S.-K., 1998. Asymptotic homogenization of viscoelastic composites with periodic microstructures.

International Journal of Solids and Structures 35, 2039±2055.

Youn, S.-K., Park, S.-H., 1997. A study on the shape extraction process in the structural topology optimization using homogenized

material. Computers and Structures 62 (3), 527±538.

Y. Yi et al. / International Journal of Solids and Structures 37 (2000) 4791±48104810


